Regularized image up-sampling using a new observation model and the level set method
نویسندگان
چکیده
This paper presents a new formulation of the regularized image up-sampling problem that incorporates models of the image acquisition and display processes. This approach leads to a new data fidelity term that has been coupled with a bounded-total-variation regularizer to yield our objective function. This objective function is minimized using the level-set method with two types of motion that interact simultaneously. The method was implemented and has been verified to provide good results, yielding crisp edges without introducing ringing or other artifacts.
منابع مشابه
The Effectiveness of Image Relationship Therapy on Communication Patterns and Marital Burnout in Couples
The purpose of this study was to investigate the effectiveness of Image Relationship Therapy on communication patterns and marital burnout in couples. The purpose of this study was applied and its method is the experiment was semi-experimental with pre-test, post-test and follow-up with the control group. In this research, the sampling method of couples referring to counseling centers in Tehran...
متن کاملRegularized Image Up-sampling
This thesis addresses the problem of performing image magnification to achieve higher perceived resolution for grey-scale and color images. A new perspective on the problem is introduced through the new concept of a theoretical camera that can acquire an ideal high resolution image. A new formulation of the problem is then introduced using two ingredients: a newly designed observation model and...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملتحلیل ممیز غیرپارامتریک بهبودیافته برای دستهبندی تصاویر ابرطیفی با نمونه آموزشی محدود
Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کامل